Puissance réactive

Augmenter l’efficacité et la stabilité du réseau électrique

Qu’est-ce que la puissance réactive/compensation de la puissance réactive ?

Définition officielle : selon la norme VDE 0100-710, la puissance réactive fait référence à la puissance électrique qui circule entre les conducteurs de phase et le conducteur neutre d’un réseau triphasé, mais qui n’est pas en mesure d’effectuer un travail mécanique. Elle est mesurée en volts-ampères-réactifs (VAR).

La compensation de la puissance réactive est le processus par lequel la puissance réactive présente dans le réseau est compensée afin d’augmenter l’efficacité et la stabilité du réseau électrique. Cela se fait souvent à l’aide de condensateurs qui génèrent une puissance réactive opposée et réduisent ainsi la puissance réactive totale dans le réseau. Cette compensation est importante pour améliorer le facteur de puissance du réseau, ce qui permet de faire circuler moins de puissance réactive dans le réseau. Le triangle de puissance est un concept qui représente la relation entre la puissance active, la puissance apparente et la puissance réactive.

Exemple : Supposons qu’une entreprise industrielle exploite plusieurs gros moteurs électriques qui génèrent une puissance réactive inductive considérable. Sans compensation, le fournisseur d’énergie devrait fournir cette puissance réactive supplémentaire, ce qui entraînerait une augmentation des pertes sur le réseau et une baisse de l’efficacité. En utilisant des condensateurs pour la compensation, l’entreprise peut générer sa propre puissance réactive et réduire ainsi la charge sur le réseau.

La compensation de la puissance réactive présente de nombreux avantages, notamment l’amélioration de l’efficacité énergétique, la réduction des coûts énergétiques et l’augmentation de la stabilité du réseau. Dans de nombreux pays, certaines dispositions relatives à la compensation de la puissance réactive sont obligatoires afin de garantir la qualité et la stabilité du réseau électrique.

Globalement, la puissance réactive et sa compensation jouent un rôle crucial dans l’approvisionnement énergétique moderne et sont d’une grande importance pour les entreprises et les fournisseurs d’énergie afin d’éviter le courant réactif et de rendre le réseau efficace.

Quelle est la différence entre la puissance active et la puissance apparente ?

Les notions de puissance active, de puissance apparente et de puissance réactive sont des concepts fondamentaux en électrotechnique, qui décrivent la relation entre différents types de puissance électrique.

Puissance active (P) :
La puissance active est mesurée en watts (W).
Elle représente la puissance électrique réelle utilisée par un appareil ou une installation dans un réseau électrique pour effectuer un travail. En d’autres termes, il s’agit de la puissance utile qui, par exemple, fait tourner un moteur, produit de la lumière ou fait fonctionner des appareils électriques.

Puissance apparente (S) :
La puissance apparente se mesure en volts-ampères (VA).
Elle représente la puissance électrique totale présente dans un réseau électrique, indépendamment du fait qu’elle soit effectivement utilisée pour effectuer des tâches. La puissance apparente se compose de la puissance active et de la puissance réactive et peut être considérée comme une « puissance apparente ».

Puissance réactive (Q) :
La puissance réactive est également mesurée en volts-ampères-réactifs (VAR).
Elle représente la puissance électrique qui circule entre les conducteurs de phase et le conducteur neutre d’un réseau triphasé, mais qui n’effectue aucun travail mécanique. Elle est principalement générée par les charges inductives et capacitives et est nécessaire au fonctionnement de ces charges, mais ne contribue pas à l’exécution des tâches.

Dans un triangle de puissance, qui représente visuellement les relations entre la puissance active, la puissance apparente et la puissance réactive, la puissance active correspond au côté horizontal du triangle, la puissance apparente est l’hypoténuse du triangle et la puissance réactive est le côté vertical du triangle.

Un wattmètre actif est un instrument qui mesure la puissance active réelle dans un circuit électrique. Il aide à surveiller et à contrôler la consommation d’énergie.

En résumé : La puissance active est la puissance réelle utilisable, la puissance apparente est la puissance totale dans le réseau et la puissance réactive est la puissance qui n’est pas utilisée pour effectuer des tâches, mais qui est nécessaire au fonctionnement des charges inductives et capacitives. Ces concepts sont importants pour comprendre et optimiser l’efficacité et la stabilité des réseaux électriques. Un wattmètre actif est un outil utile pour surveiller la consommation d’énergie.

Vous trouverez un aperçu plus approfondi du calcul et de l’interaction des puissances active, apparente et réactive dans notre lettre d’information 25 « Définition des grandeurs de mesure de la puissance selon les normes DIN 40110-2 et IEEE 1459 » :

LETTRE D’INFO n° 22

Définition des grandeurs de mesure de la puissance selon les normes DIN 40110-2 et IEEE 1459

Comment la puissance réactive est-elle calculée ?

La puissance réactive est calculée à l’aide de la formule suivante :

Puissance réactive (Q) = puissance apparente (S) × sin(φ)
Q : puissance réactive en volt-ampère-réactif (VAR).
S : puissance apparente en volt-ampère (VA).
φ : angle de déphasage entre la puissance active (P) et la puissance apparente (S).

L’angle de déphasage (φ) est essentiel pour calculer la quantité de puissance réactive. Il peut être positif ou négatif, selon qu’il s’agit de charges inductives ou capacitives.

Pour les charges inductives (par ex. les moteurs électriques), l’angle de déphasage est positif, car la puissance réactive est inférieure à la puissance active. Dans ce cas, la formule est la suivante :

Q = S × sin(φ)

Pour les charges capacitives (par ex. condensateurs), l’angle de déphasage est négatif, car la puissance réactive précède la puissance active. Dans ce cas, la formule est la suivante :

Q = -S × sin(φ)

Lors de la compensation de la puissance réactive, on essaie de minimiser l’angle de déphasage (φ) afin de réduire la puissance réactive. Cela peut être réalisé par l’utilisation ciblée de condensateurs ou d’autres dispositifs de compensation.

En plus de la formule de calcul de la puissance réactive, il existe des calculateurs de compensation de la puissance réactive qui peuvent être utilisés pour des systèmes et des réseaux plus complexes afin de déterminer la quantité exacte de compensation nécessaire.

L’unité de puissance réactive est le Volt-Ampère-Réactif (VAR), qui indique la quantité de puissance électrique nécessaire dans un système pour créer des champs électromagnétiques dans les appareils inductifs ou pour compenser les charges capacitives. Il s’agit d’un aspect important en électrotechnique pour assurer l’efficacité et la stabilité des réseaux électriques.

Comment mesure-t-on la puissance réactive ?

La mesure de la puissance réactive dans les circuits électriques multiconducteurs est définie dans les normes DIN 40110-2 (Allemagne) ou IEEE 1459 (international). Les méthodes de calcul de ces normes constituent donc la base des calculs de puissance pour les appareils de mesure modernes. Tous les appareils de la gamme de produits A. Eberle – des appareils fixes aux analyseurs de réseau mobiles – utilisent la méthode de calcul selon DIN 40110-2.

Mesurer la puissance réactive est une étape importante pour évaluer l’état et l’efficacité d’un système électrique. Différentes méthodes et instruments sont disponibles pour mesurer la puissance réactive. Voici quelques aspects importants de la mesure de la puissance réactive :

Wattmètre
Un wattmètre est un instrument de mesure électrique utilisé pour déterminer la puissance active (en watts) dans un système électrique. La puissance active peut être mesurée en insérant un wattmètre dans le circuit. Pour calculer la puissance réactive, on peut utiliser la formule de calcul de la puissance réactive (Q) :

Puissance réactive (Q) = √(S^2 – P^2), avec :

  • Q : puissance réactive en volts-ampères-réactifs (VAR).
  • S : puissance apparente en volt-ampères (VA).
  • P : puissance active en watts (W).

Oscilloscope
Lors de la mesure de la puissance réactive avec un oscilloscope, les formes d’onde de la tension et du courant sont analysées. Le déphasage entre la tension et le courant peut être lu sur l’oscilloscope. Un angle de déphasage non nul indique la présence d’une puissance réactive. L’ampleur de la puissance réactive peut être calculée à l’aide de la trigonométrie.

Mesure du courant triphasé
Dans les systèmes triphasés, des wattmètres triphasés spéciaux ou des wattmètres triphasés sont utilisés pour mesurer la puissance active et la puissance apparente dans les trois phases. La mesure de la puissance réactive dans les systèmes triphasés nécessite généralement des instruments et des calculs plus complexes, car le déphasage entre les phases doit être pris en compte.

Méthodes de commutation
Dans certains cas, des circuits spéciaux sont utilisés pour mesurer la puissance réactive. Par exemple, la mesure de la puissance réactive peut être effectuée avec des condensateurs de compensation afin de déterminer la quantité de compensation de la puissance réactive. Dans ce cas, des condensateurs sont ajoutés ou retirés afin de minimiser l’angle de déphasage et de compenser ainsi la puissance réactive.

Il est important de choisir les instruments et les méthodes de mesure corrects en fonction des exigences spécifiques du système. La mesure de la puissance réactive est essentielle pour garantir que les installations électriques fonctionnent de manière efficace et stable et pour déterminer la nécessité de compenser la puissance réactive.

Mesurer la puissance réactive avec des analyseurs de réseau de A. Eberle

Avec notre famille d’appareils Power Quality, composée d’analyseurs de réseau mobiles et d’appareils de mesure de la qualité de l’énergie fixes, vous avez la possibilité unique de diviser et d’afficher l’énergie réactive en différentes grandeurs de mesure indépendantes :

  • Puissance réactive de décalage des vibrations fondamentales
  • Puissance réactive de décalage harmonique
  • Puissance réactive de distorsion
  • Puissance réactive de modulation
  • Puissance réactive de déséquilibre

Des réductions de coûts considérables peuvent être obtenues, notamment lors de l’évaluation de l’utilisation de technologies de filtrage, comme les filtres harmoniques pour réduire la puissance réactive de distorsion. Cela peut également avoir un effet positif sur les tarifs de réseau. Aux points de connexion entre le réseau industriel et l’alimentation publique du réseau, nous recommandons donc l’utilisation d’une solution fixe de qualité de l’énergie/d’analyse du réseau, comme notre analyseur fixe de qualité de l’énergie avec fonction d’enregistreur de perturbations « PQI-DE ». L’appareil de mesure peut à la fois enregistrer localement sur place les différents types de puissance réactive et les transmettre à distance à différentes interfaces (voir illustration).

Pour mesurer correctement les différents types de puissance en fonction de l’application, nos analyseurs mobiles de qualité de puissance (PQ-Box 150, 200 et 300) offrent une multitude de possibilités de réglage.

Alors que la puissance réactive de déplacement et de distorsion a en principe une signification à chaque point de mesure, la mesure de la puissance réactive de déséquilibre doit tenir compte des conditions marginales de la mesure ainsi que de la position du point de mesure dans le réseau afin d’obtenir des données de mesure pertinentes.

A titre d’exemple, la figure suivante représente schématiquement un réseau local de 400 V avec un transformateur local, des ménages principalement raccordés en monophasé ainsi qu’une entreprise industrielle avec une charge biphasée (par exemple un poste de soudage).

Le facteur décisif pour la mesure de la puissance réactive asymétrique est donc avant tout la longueur du tronçon de ligne qui est chargé par la puissance réactive mesurée. Lors d’une mesure dans une zone résidentielle où les différentes charges sont principalement raccordées en monophasé, de très grandes asymétries apparaissent. La puissance réactive asymétrique mesurable n’est toutefois pas très significative dans ce cas, car la charge du système triphasé varie à chaque nœud proche et aucun tronçon de réseau important n’est donc chargé de manière asymétrique.

En revanche, l’observation de la puissance réactive asymétrique est utile pour les mesures effectuées directement sur le transformateur du réseau local ou sur de longues lignes d’alimentation pour des charges asymétriques.

blindleistung-berechnung-leistungsmessung-praxis

La mesure de la puissance réactive de modulation dépend fortement de l’intervalle de mesure choisi. La prise en compte de cette puissance réactive pour le calcul des puissances apparentes collectives n’a donc de sens que si l’on dispose de charges dont la puissance varie périodiquement et si l’on connaît la fréquence de modulation de la variation de puissance.

Exemples/cas concrets d’application de la compensation de puissance réactive

Installations photovoltaïques (PV) :

  • La compensation de la puissance réactive dans les installations PV avec onduleur est essentielle pour minimiser les effets de la puissance réactive capacitive ou inductive générée par les onduleurs. Pour ce faire, l’onduleur peut être réglé de manière à réduire la puissance réactive à un niveau optimal.

Installations industrielles avec moteurs électriques :

  • Dans les installations industrielles, les moteurs électriques génèrent souvent une puissance réactive inductive. La compensation de la puissance réactive par l’utilisation de condensateurs ou d’autres dispositifs de compensation est importante pour augmenter l’efficacité énergétique et éviter les surcharges.

Onduleurs dans la technique énergétique :

  • La compensation de la puissance réactive dans les onduleurs consiste à adapter les réglages de manière à optimiser la puissance réactive générée. Cela contribue à minimiser les fluctuations du réseau et à améliorer la qualité du réseau.

Ménages privés équipés de moteurs électriques :

  • Les appareils électriques domestiques peuvent générer de la puissance réactive. La compensation de la puissance réactive dans les ménages privés augmente le facteur de puissance et optimise l’efficacité du réseau électrique.

Câbles et lignes de transmission :

  • Lors de la transmission d’énergie électrique sur de grandes distances, une puissance réactive capacitive est générée dans les câbles. Les compensateurs de puissance réactive avec self permettent d’améliorer la qualité du réseau et d’augmenter l’efficacité de la transmission.

Moteurs à courant triphasé :

  • Dans les applications industrielles avec des moteurs triphasés, la compensation de la puissance réactive est importante pour optimiser le facteur de puissance et minimiser les pertes de réseau.

Couplage en série de compensateurs de puissance réactive :

  • Dans les réseaux industriels complexes, le montage en série de dispositifs de compensation peut être utilisé pour compenser la puissance réactive et garantir la stabilité du système.

Compensation de la puissance réactive dans les ménages privés :

  • La compensation de l’énergie réactive chez les particuliers est pertinente pour optimiser la consommation d’énergie et améliorer l’efficacité globale du réseau électrique.

Compensation de la puissance réactive par étranglement :

  • La compensation de puissance réactive par distorsion est une méthode spécifique pour minimiser les effets de la puissance réactive dans les systèmes électriques.

La compensation de l’énergie réactive revêt une grande importance dans diverses applications afin d’améliorer la qualité et l’efficacité des réseaux électriques, de minimiser les pertes de réseau et d’optimiser l’efficacité globale des systèmes électriques.

Vous avez d’autres questions ?

N’hésitez pas à nous contacter !


Contactez-nous maintenant

Nouveautés des groupes de produits

Power Quality | – News

Séminaire web

»PQMobil« Webinar: New Features/Functions for Your PQ-Box/es: Presentation of WinPQ mobil V8 & V7 legacy

Webinaire enregistré du 2025-07-29: »PQMobil - New Features/Functions for Your PQ-Box/es: Presentation of WinPQ mobil V8 & V7 legacy«.

Lire la suite

Contribution au savoir

La mesure de la tension peut améliorer la qualité de l’approvisionnement

Une brève étude réalisée par l'EWI et le Fraunhofer IEG montre que des mesures obligatoires de la tension et une réglementation plus stricte de la qualité de la tension sont nécessaires pour garantir la stabilité du réseau en Allemagne dans le contexte de la transition énergétique.

Lire la suite

Contribution au savoir

Puissance électrique dans les systèmes multiphasés

Ce travail met en lumière les particularités du transfert de puissance dans les systèmes triphasés et offre un aperçu précieux de l'optimisation et de l'analyse des réseaux électriques modernes.

Lire la suite

Blogpost

Visite de L’école Technique Rudolf-Diesel Chez A. Eberle

Ravi que vous soyez venus, École technique Rudolf-Diesel ! Hier, nous avons eu le plaisir d'accueillir deux classes de futurs techniciens diplômés de l'École technique Rudolf-Diesel de Nuremberg dans nos locaux.

Lire la suite

Blogpost

Distinction Top 100 2025 : Innovation Pour L’Avenir de L’énergie

Dans le cadre du prix TOP 100 de 2025, nous avons eu l'honneur de recevoir une distinction particulière la semaine dernière à Mayence – remise en main propre par l'animateur TV et journaliste scientifique Ranga Yogeshwar.

Lire la suite

Séminaire web

»EOR-3DS« & »PQSys« Webinar: Digitise and monitor local network substations for the future with »EOR-3DS« & »PQSys«

Webinaire enregistré du 2024-10-10: »EOR-3DS« & »PQSys - Digitise and monitor local network substations for the future with »EOR-3DS« & »PQSys««.

Lire la suite

Blogpost

Excursion universitaire: Excursion de la Pentecôte de l’Université Friedrich-Alexander d’Erlangen-Nuremberg (FAU)

En tant qu’entreprise engagée en faveur de l’innovation, de l’éducation et de la transition énergétique, nous sommes heureux d’avoir une fois de plus soutenu cette année l’excursion de la Pentecôte de l’Université Friedrich-Alexander d’Erlangen-Nuremberg (FAU).

Lire la suite

Blogpost

Nouvelle croissance de A. Eberle

Bienvenue Dans L’équipe ! Nous souhaitons la bienvenue à nos nouveaux collègues chez A. Eberle.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 2

Webinaire enregistré du 2024-11-13: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids with »A. Eberle PQ-Boxes« | Experiences, Applications & Future Outlook«.

Lire la suite

Blogpost

Formation spécialisée sur la qualité de la tension

Le 27 mai 2025, au centre technique Balthasar Neumann de Trèves (BNT), une formation spécialisée sur la qualité de la tension a porté sur le courant, les perturbations et la manière de les reconnaître. Formation spécialisée sur la qualité de la tension

Lire la suite

Blogpost

Formation des utilisateurs de PQ-Box avec notre partenaire GENETEK Enerji Sistemleri Ltd. à Başiskele/Turquie

Une nouvelle formation internationale d'utilisateurs réussie pour nos analyseurs de réseau mobiles Power Quality avec notre partenaire GENETEK Enerji Sistemleri Ltd. à Başiskele/Turquie.

Lire la suite

Séminaire web

»PQSys« Webinar: PQ-Monitoring & Feeder Current Measurement in Low-Voltage Grids 3

Webinaire enregistré du 2025-05-14: »PQSys - PQ-Monitoring & Feeder Current Measurement in Low-Voltage Grids - partie 3«.

Lire la suite

Séminaire web

»PQSys« Webinar: Surveillance de la qualité de l’énergie dans le réseau à basse tension

Webinaire enregistré du 2025-05-13: »PQSys - Surveillance de la qualité de l'énergie dans le réseau à basse tension«.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 3

Webinaire enregistré du 2025-04-02: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids – Part 3«.

Lire la suite

Séminaire web

»PQMobil« Webinar: Mesure portable de la qualité de l’électricité

Webinaire enregistré du 2025-04-15: »PQMobil - Mesure portable de la qualité de l'électricité«.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 7: Measurement Data

Cette vidéo est consacrée aux données de mesure. Quelles sont les données enregistrées par la PQ-Box et quelle est la meilleure façon de les configurer au préalable ? Où WinPQ mobile affiche-t-il les données de mesure et quelle vue facilite l'analyse ? Et comment exporter les données ?

Lire la suite

Vidéo de formation

Vidéo de formation »PQSys« 1: Présentation des nouvelles fonctions du firmware V3.2 pour PQI-LV, PQI-DA smart & PQI-DE

Dans cette vidéo, nous vous présentons les nouvelles fonctions et les possibilités étendues de la version 3.2 du firmware pour nos analyseurs de qualité de puissance fixes et nos enregistreurs de perturbations PQI-L , PQI-DA smart et PQI-DE de la gamme de produits PQSys. Découvrez en trois minutes seulement comment le nouveau firmware élargit les possibilités d'utilisation et de commande de vos appareils de mesure A. Eberle.

Lire la suite

Séminaire web

»PQSys« Webinar: Presentation: »PQI-LV« – The New PQ-Analyser for Transparency in the Low-Voltage Grid

Webinaire enregistré du 2025-02-19: »PQSys - Presentation: »PQI-LV« - The New PQ-Analyser for Transparency in the Low-Voltage Grid«.

Lire la suite

Contribution au savoir

Mesure de la chute de tension

La chute de tension est la différence entre la tension au début et à la fin d'une ligne électrique. Dans un réseau électrique, la tension peut être réduite par la résistance et l'impédance des lignes, ce qui fait que le consommateur reçoit une tension inférieure à celle qu'il avait à l'origine. Pour tout savoir sur la mesure et le calcul, consultez cet article.

Lire la suite

Contribution au savoir

Les harmoniques

Les harmoniques sont des ondes dont la fréquence est un multiple entier de celle du fondamental. Elles apparaissent en raison de charges non linéaires dans le réseau d'alimentation, lorsque la tension électrique est déformée en raison de différents facteurs d'influence. Apprenez-en plus sur les harmoniques dans cet article !

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 6 : Présentation de WinPQ mobil 7.1

Dans cette vidéo, nous vous présentons toutes les nouvelles caractéristiques et fonctions de la dernière version du logiciel d'analyse »WinPQ mobil 7.1« pour nos analyseurs de qualité d'énergie portables. Profitez de la vidéo et des nouvelles possibilités offertes par votre PQ-Box d'A. Eberle.

Lire la suite

Blogpost

International Partner Week 2024 – une rétrospective

Notre Semaine internationale des partenaires 2024 - beaucoup d'anciens amis et aussi de nouveaux visages étaient invités, c'était un plaisir pour nous.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 5 : Régler les déclencheurs et les messages de perturbation

Découvrez les meilleurs paramètres de déclenchement pour votre »PQ-Box« afin d'enregistrer avec précision les perturbations du réseau. La vidéo montre comment configurer les enregistreurs de demi-cycles, d'oscilloscopes et de transitoires pour capturer de manière fiable les données de mesure essentielles.

Lire la suite

Séminaire web

»PQSys« Webinar: PQ-Monitoring & Feeder Current Measurement with PQSys

Webinaire enregistré du 2024-08-06: »PQSys - PQ-Monitoring & Feeder Current Measurement with PQSys«.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 1

Webinaire enregistré du 2024-02-22: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids – Part 1«.

Lire la suite

Demande de contact:



* Champs obligatoires

Vos données sont en cours de traitement

a-eberle kontakt newsletter ×

Unser Newsletter zum Thema »LVRSys®« – Niederspannungsregelung

Möchten Sie weitere interessante Inhalte wie Fachberichte, Anwendungsbeispiele und Schulungsvideos zum Thema »LVRSys®« – Niederspannungsregelung erhalten?

Melden Sie sich hier kostenfrei an:

Vielen Dank für Ihre Anmeldung zu unserem Newsletter zum Thema »LVRSys®« – Niederspannungsregelung

Hier glangen Sie zum Download: