Mesure de l’électricité

Quatre façons de procéder

Le rapport technique suivant examine différentes méthodes de mesure du courant. Il explique comment les courants sont mesurés à l’aide d’analyseurs de puissance et de pinces ampèremétriques. Les avantages et inconvénients respectifs des différentes technologies telles que les shunts, les pinces de courant normales, les capteurs à effet Hall et les bobines de Rogowski sont examinés. Les erreurs de mesure possibles sont également abordées.

1. Shunt de courant

1 Exemple: shunt de courant

L’utilisation d’un shunt est particulièrement recommandée lorsqu’une grande précision est requise dans la mesure, comme c’est le cas, par exemple, dans les bancs d’essai des moteurs. On utilise une résistance très précise, par exemple d’une valeur de 0,1 Ohm. Le flux de courant de 100 ampères à travers le shunt entraîne une chute de tension de 10 volts, qui est linéairement proportionnelle au courant qui le traverse. Le principe de mesure est très précis et permet d’enregistrer des fréquences élevées ainsi que des signaux alternatifs et continus. L’inconvénient est que le shunt doit être installé sur le réseau, ce qui est généralement trop coûteux pour des mesures à court terme avec un analyseur de puissance mobile. Il convient de noter que le shunt de courant peut être installé dans la phase avec un potentiel élevé à la terre, ainsi que dans le conducteur N. Il est important de prendre en compte le potentiel à la terre. Il est important de tenir compte du potentiel auquel les shunts sont situés lors de leur utilisation. Par exemple, un analyseur de puissance peut mesurer la tension de sortie de 10 volts, mais un potentiel du shunt à la terre pourrait surcharger l’appareil. Par conséquent, il est important d’examiner attentivement si l’utilisation d’un shunt est favorable dans une application particulière et si l’appareil de mesure est également conçu pour le potentiel élevé.

2 Pinces ampèremétriques avec noyau métallique

2 Pince de courant avec noyau métallique de A. Eberle
3 Principe physique de fonctionnement d’une pince de courant à noyau métallique

The conventional technique for measuring current is to use fixed current La technique conventionnelle de mesure du courant consiste à utiliser des pinces de courant fixes. Celles-ci fonctionnent sur le principe d’un transformateur. Le schéma d’une telle pince est illustré sur la figure. Le câble de courant est considéré comme l’enroulement 1. Grâce à un champ magnétique alternatif dans le noyau de fer, un courant est induit dans le deuxième enroulement, qui est indirectement proportionnel au courant dans le conducteur.

Par exemple, si un courant de 1000 ampères circule dans le conducteur et que le transformateur a 1000 enroulements, le courant à la sortie de la pince de courant sera de 1 ampère. Le rapport entre les deux courants est donc de 1:1000.

Les pinces ampèremétriques modernes sont souvent équipées d’une résistance de terminaison qui ne fournit pas de courant à la sortie, mais une tension en millivolts proportionnelle au courant. Le principe de mesure reste cependant le même. Cela permet de laisser le transformateur de courant branché sur le réseau sans danger et de le déconnecter de l’appareil de mesure. Ce transformateur de courant ne doit pas nécessairement être court-circuité, contrairement aux transformateurs courant-courant qui ne doivent pas fonctionner à l’état ouvert. Il convient d’être particulièrement vigilant lors de l’utilisation de pinces ampèremétriques à noyau métallique, car même un petit espace d’air peut entraîner d’importantes erreurs de mesure. Pour éviter cela, un verrouillage a été intégré dans les pinces de courant miniatures de la boîte PQ. Cependant, à des courants plus élevés, comme dans la gamme des 1000-3000 ampères, les pinces deviennent très lourdes, grandes et peu maniables, ce qui rend difficile la manœuvre autour des grands conducteurs. Dans ce cas, l’utilisation de pinces de courant Rogowski est une alternative plus pratique.

3. Pinces de courant pour capteurs à effet Hall

Si des signaux AC et DC doivent être mesurés, l’effort requis pour la technologie de mesure est un peu plus important. Une pince passive ne peut pas être utilisée dans ce cas. En revanche, l’effet Hall peut être utilisé en métrologie. Il s’agit d’un composant semi-conducteur sur lequel circule un courant. Lorsque cet élément semi-conducteur se trouve dans un champ magnétique, il se produit une séparation des porteurs de charge dans le composant conducteur de Hall. Cela signifie que les porteurs de charge sont déplacés d’un côté dans le champ magnétique. La tension de l’élément du capteur de Hall est proportionnelle au champ magnétique. Grâce à cet effet, les courants alternatifs et continus peuvent être mesurés.

4 Pinces de courant pour capteurs Hall de A. Eberle pour les courants alternatifs et continus
5 Principe de construction d’une pince à effet Hall

L’utilisation de pinces de courant alternatif et continu présente à la fois des avantages et des inconvénients. Bien que ces pinces soient très fréquemment utilisées, elles ne font pas partie de l’équipement standard de tous les appareils de mesure. L’un des inconvénients de ces pinces est qu’elles sont parfois très sensibles à la température.

Généralement, il faut calibrer une pince de courant continu à la valeur 0 à l’aide d’une touche ou d’un bouton rotatif avant chaque mesure. Cependant, cela peut entraîner des erreurs relativement graves dans la technique de mesure pour de longues périodes de mesure, comme la surveillance d’un système solaire pendant 7 jours, en raison des fluctuations de température entre le jour et la nuit.

Une autre limitation est la nécessité d’une alimentation électrique. La plupart des pinces ampèremétriques sont conçues pour fonctionner avec des piles, ce qui n’est pas pratique pour les longues périodes de mesure. Il existe cependant des pinces qui peuvent être alimentées par une source d’énergie externe, ce qui permet de prolonger les périodes de mesure. Lors de l’utilisation de pinces ampèremétriques, il convient de noter qu’il existe diverses sources d’erreur de mesure, telles que la dérive de la température.

4. Bobines Rogowski

6 Bobines Rogowski de A. Eberle

Les pinces de Rogowski sont très faciles à utiliser, car elles sont disponibles dans toutes les longueurs et tailles, et leur conception est très flexible. L’une des demandes des clients est que la pince soit aussi fine et petite que possible, afin que ces boucles puissent être logées même dans des espaces très restreints. L’avantage d’une boucle de courant très fine s’accompagne toutefois d’un inconvénient en termes de technologie de mesure. Le signal de sortie dépend du diamètre de la tête. Un diamètre plus grand entraîne un signal de sortie plus important. Par conséquent, bien qu’une pince fine puisse être utilisée dans des espaces plus restreints, le signal de sortie est plus faible et des courants plus faibles ne peuvent donc être détectés qu’avec une erreur de mesure plus importante. Il s’agit d’une limitation physique incontournable.

Une bobine de Rogowski est constituée d’un noyau en caoutchouc qui se comporte magnétiquement comme de l’air et est donc également appelée bobine d’air.

7 Principe de fonctionnement Bobine de Rogowski (également appelée « bobine à noyau d’air »)

Pour réduire les erreurs de mesure lors de la mesure de petits courants, il est possible d’enrouler la bobine deux fois autour d’un conducteur. Étant donné que la valeur mesurée serait alors doublée, il est très facile de corriger ce problème en ajustant le rapport de transformation dans les paramètres de la boîte PQ au facteur x0,5.

Il convient de noter que les transformateurs de courant de Rogowski ne peuvent mesurer que des courants alternatifs et non des courants continus. Chaque bobine de Rogowski a besoin d’un intégrateur à la sortie pour retracer le signal de sortie jusqu’au signal de courant d’origine. La plupart des bobines de Rogowski ont une électronique intégrée dans le câble, ce qui nécessite généralement une alimentation électrique. Toutes les boîtes PQ d’A-eberle ont deux entrées de courant séparées. Une entrée pour les pinces de courant et une entrée pour les bobines de Rogowski. Grâce à un codage dans la fiche de la pince de courant, l’appareil de mesure reconnaît automatiquement le bon type de pince. Une alimentation pour ces pinces de courant n’est donc pas nécessaire, et la précision est améliorée, car le signal de mesure n’est pas converti deux fois.

En ce qui concerne les erreurs de mesure, il convient de tenir compte des informations figurant sur la fiche technique du fournisseur de la pince actuelle.

8 Caractéristiques techniques d’une bobine de Rogowski

L’étalonnage et la fabrication des pinces permettent d’obtenir des erreurs de mesure relativement faibles, de l’ordre de 0,5 % de la valeur mesurée, lors de l’utilisation des pinces de courant de Rogowski. Le facteur d’erreur le plus important est souvent la sensibilité de la pince à la position. La précision optimale est obtenue lorsque le conducteur est positionné exactement au centre de la pince. Dans la pratique, cependant, le positionnement du conducteur influence le résultat de la mesure jusqu’à 2 %. D’autres facteurs qui influencent la précision sont la linéarité, les influences de la température et les champs voisins. Ainsi, les courants dans les conducteurs voisins influencent également le résultat de la mesure. Cette erreur peut atteindre 1 % des courants voisins. Elle devient problématique lorsqu’il s’agit de mesurer de petits courants à proximité de conducteurs présentant des courants importants. Dans ce cas, l’erreur peut atteindre 100 % de la valeur mesurée. Il est donc nécessaire d’examiner attentivement les conditions ambiantes, en particulier lors de la mesure de faibles courants.
L’utilisation de mini-pinces de courant est généralement plus adaptée à la mesure de très petits courants.

Erreurs angulaires

Les erreurs de mesure, en particulier les erreurs angulaires, peuvent être causées par le prélèvement de tensions et de courants. En règle générale, les tensions sont prélevées de manière fixe, tandis que les courants sont mesurés à l’aide de pinces de courant. Cependant, chaque pince de courant présente une légère erreur de phase, ce qui peut entraîner l’affichage du courant mesuré en avance ou en retard. Le compteur calcule toutes les puissances à partir des prélèvements de tensions et de courants.

À titre d’exemple, on montrera comment les erreurs angulaires sont perceptibles dans les grandeurs de mesure de la puissance.

9 Exemple de calcul de l’erreur angulaire 1

L’exemple 1 est un réseau où le cosphi est assez bon, avec un angle de phase de 10 degrés entre la tension fondamentale et le courant fondamental. Une erreur de phase d’une pince de courant d’un degré peut donner les résultats de mesure suivants à l’écran du compteur pour une valeur réelle de 0,984 pour le cosphi : Max : 0,981 ou Min : 0.967.

Cela correspond à une erreur de 0,3 % pour le cosphi ainsi que pour la puissance active.

Dans l’exemple 2, une mesure à un angle de phase extrêmement grand est utilisée. Cette application vise à déterminer les pertes de puissance active au niveau d’une bobine d’inductance de 2,3 MVA de puissance réactive dans un réseau moyenne tension. Le cosinus Phi de cet inducteur doit être de 90 degrés si possible. Dans notre cas, l’erreur de phase est de 89 degrés.

Une erreur angulaire supplémentaire d’un degré de la pince de courant ou même d’un transformateur de mesure secondaire peut maintenant conduire à une erreur de mesure allant jusqu’à 200 pour cent.

Dans ce cas, les pertes de puissance active de cette bobine peuvent se situer entre 0 et 200% de la valeur mesurée réelle. En revanche, pour la puissance réactive, la mesure est très précise dans ce cas.

10 Exemple de calcul de l’erreur angulaire 2
11 Facteur de correction de l’angle d’entrée Logiciel PQ mobile de A. Eberle

Pour les évaluations dans le réseau où des mesures d’angle correctes sont très importantes, comme lors de mesures dans un réseau à moyenne tension ou via des transformateurs de courant dans un réseau à basse tension, la correction des erreurs d’angle des différents transformateurs peut devenir très importante.

Dans toutes les boîtes PQ, un facteur de correction angulaire peut être enregistré pour les calculs des grandeurs de mesure de puissance et des angles de phase. Cela permet de corriger très facilement les erreurs angulaires pour les mesures où l’erreur angulaire est cruciale.

Auteur
Jürgen Blum, Chef de produit Qualité de l’énergie Mobil

Besoin de plus d’informations ?

Contactez nous maintenant!


Contacter

Nouveautés des groupes de produits

Power Quality | – News

Séminaire web

»PQMobil« Webinar: New Features/Functions for Your PQ-Box/es: Presentation of WinPQ mobil V8 & V7 legacy

Webinaire enregistré du 2025-07-29: »PQMobil - New Features/Functions for Your PQ-Box/es: Presentation of WinPQ mobil V8 & V7 legacy«.

Lire la suite

Contribution au savoir

La mesure de la tension peut améliorer la qualité de l’approvisionnement

Une brève étude réalisée par l'EWI et le Fraunhofer IEG montre que des mesures obligatoires de la tension et une réglementation plus stricte de la qualité de la tension sont nécessaires pour garantir la stabilité du réseau en Allemagne dans le contexte de la transition énergétique.

Lire la suite

Contribution au savoir

Puissance électrique dans les systèmes multiphasés

Ce travail met en lumière les particularités du transfert de puissance dans les systèmes triphasés et offre un aperçu précieux de l'optimisation et de l'analyse des réseaux électriques modernes.

Lire la suite

Blogpost

Visite de L’école Technique Rudolf-Diesel Chez A. Eberle

Ravi que vous soyez venus, École technique Rudolf-Diesel ! Hier, nous avons eu le plaisir d'accueillir deux classes de futurs techniciens diplômés de l'École technique Rudolf-Diesel de Nuremberg dans nos locaux.

Lire la suite

Blogpost

Distinction Top 100 2025 : Innovation Pour L’Avenir de L’énergie

Dans le cadre du prix TOP 100 de 2025, nous avons eu l'honneur de recevoir une distinction particulière la semaine dernière à Mayence – remise en main propre par l'animateur TV et journaliste scientifique Ranga Yogeshwar.

Lire la suite

Blogpost

Excursion universitaire: Excursion de la Pentecôte de l’Université Friedrich-Alexander d’Erlangen-Nuremberg (FAU)

En tant qu’entreprise engagée en faveur de l’innovation, de l’éducation et de la transition énergétique, nous sommes heureux d’avoir une fois de plus soutenu cette année l’excursion de la Pentecôte de l’Université Friedrich-Alexander d’Erlangen-Nuremberg (FAU).

Lire la suite

Blogpost

Nouvelle croissance de A. Eberle

Bienvenue Dans L’équipe ! Nous souhaitons la bienvenue à nos nouveaux collègues chez A. Eberle.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 2

Webinaire enregistré du 2024-11-13: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids with »A. Eberle PQ-Boxes« | Experiences, Applications & Future Outlook«.

Lire la suite

Blogpost

Formation spécialisée sur la qualité de la tension

Le 27 mai 2025, au centre technique Balthasar Neumann de Trèves (BNT), une formation spécialisée sur la qualité de la tension a porté sur le courant, les perturbations et la manière de les reconnaître. Formation spécialisée sur la qualité de la tension

Lire la suite

Blogpost

Formation des utilisateurs de PQ-Box avec notre partenaire GENETEK Enerji Sistemleri Ltd. à Başiskele/Turquie

Une nouvelle formation internationale d'utilisateurs réussie pour nos analyseurs de réseau mobiles Power Quality avec notre partenaire GENETEK Enerji Sistemleri Ltd. à Başiskele/Turquie.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 3

Webinaire enregistré du 2025-04-02: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids – Part 3«.

Lire la suite

Séminaire web

»PQMobil« Webinar: Mesure portable de la qualité de l’électricité

Webinaire enregistré du 2025-04-15: »PQMobil - Mesure portable de la qualité de l'électricité«.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 7: Measurement Data

Cette vidéo est consacrée aux données de mesure. Quelles sont les données enregistrées par la PQ-Box et quelle est la meilleure façon de les configurer au préalable ? Où WinPQ mobile affiche-t-il les données de mesure et quelle vue facilite l'analyse ? Et comment exporter les données ?

Lire la suite

Contribution au savoir

Mesure de la chute de tension

La chute de tension est la différence entre la tension au début et à la fin d'une ligne électrique. Dans un réseau électrique, la tension peut être réduite par la résistance et l'impédance des lignes, ce qui fait que le consommateur reçoit une tension inférieure à celle qu'il avait à l'origine. Pour tout savoir sur la mesure et le calcul, consultez cet article.

Lire la suite

Contribution au savoir

Les harmoniques

Les harmoniques sont des ondes dont la fréquence est un multiple entier de celle du fondamental. Elles apparaissent en raison de charges non linéaires dans le réseau d'alimentation, lorsque la tension électrique est déformée en raison de différents facteurs d'influence. Apprenez-en plus sur les harmoniques dans cet article !

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 6 : Présentation de WinPQ mobil 7.1

Dans cette vidéo, nous vous présentons toutes les nouvelles caractéristiques et fonctions de la dernière version du logiciel d'analyse »WinPQ mobil 7.1« pour nos analyseurs de qualité d'énergie portables. Profitez de la vidéo et des nouvelles possibilités offertes par votre PQ-Box d'A. Eberle.

Lire la suite

Blogpost

International Partner Week 2024 – une rétrospective

Notre Semaine internationale des partenaires 2024 - beaucoup d'anciens amis et aussi de nouveaux visages étaient invités, c'était un plaisir pour nous.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 5 : Régler les déclencheurs et les messages de perturbation

Découvrez les meilleurs paramètres de déclenchement pour votre »PQ-Box« afin d'enregistrer avec précision les perturbations du réseau. La vidéo montre comment configurer les enregistreurs de demi-cycles, d'oscilloscopes et de transitoires pour capturer de manière fiable les données de mesure essentielles.

Lire la suite

Séminaire web

»PQMobil« Webinar: Power Quality Analysis in Public & Industrial Power Grids – Part 1

Webinaire enregistré du 2024-02-22: »PQMobil - Power Quality Analysis in Public & Industrial Power Grids – Part 1«.

Lire la suite

Contribution au savoir

Surveillance de la tension

Découvrez dans cet article tout ce qu'il faut savoir sur la "surveillance de la tension". Qu'est-ce que la surveillance de la tension, pourquoi est-elle essentielle tant pour les entreprises de distribution d'électricité que pour les entreprises industrielles et comment est-elle mise en œuvre conformément aux normes ?

Lire la suite

Contribution au savoir

Qu’est-ce qu’une mesure de la courbe de charge/de la puissance ?

Cet article traite de la définition et de la différence entre la mesure de la courbe de charge enregistrée (RLM), la mesure de la puissance enregistrée et le profil de charge standard. Il s'agit de méthodes importantes pour mesurer avec précision la consommation d'énergie dans le commerce, la grande industrie et les ménages.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 4 : Créer et configurer des rapports PQ avec le logiciel WinPQ mobil

Cette vidéo explique comment créer et configurer des rapports Power Quality avec le logiciel »WinPQ mobil«.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 3 : Utilisation et fonctions de l’application PQ-Box

Cette vidéo vous présente l'utilisation et les fonctions de l'application »PQ-Box App« pour nos analyseurs de qualité d'énergie portables.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 2 : Navigation dans les menus et utilisation de la PQ-Box

Dans cette courte vidéo d'introduction, nous vous présentons comment naviguer et utiliser nos analyseurs de qualité d'énergie portables »PQ-Box 150«, »PQ-Box 200« et »PQ-Box 300« de la famille PQ-Box.

Lire la suite

Séminaire web

»PQMobil« Webinar : Mesure portable de la qualité de l’électricité

Webinaire enregistré du 2024-04-09: »PQMobil - Mesure portable de la qualité de l'électricité«.

Lire la suite

Demande de contact:



* Champs obligatoires

Vos données sont en cours de traitement

a-eberle kontakt newsletter ×

Unser Newsletter zum Thema »LVRSys®« – Niederspannungsregelung

Möchten Sie weitere interessante Inhalte wie Fachberichte, Anwendungsbeispiele und Schulungsvideos zum Thema »LVRSys®« – Niederspannungsregelung erhalten?

Melden Sie sich hier kostenfrei an:

Vielen Dank für Ihre Anmeldung zu unserem Newsletter zum Thema »LVRSys®« – Niederspannungsregelung

Hier glangen Sie zum Download: